Домашнее хозяйство

Задача о зацеплении зубчатых колёс

437 31-08-2012 23:03

Здравствуйте, умные головы!
Прошу Вашей помощи в решении задачи об условиях сборки зубчатых колёс ( см. чертёж). Дано: z1, z2, z3 и, соответственно модуль m. Требуется найти координаты центров z2 и z3 при условии отсутствия интерференции зубьев. Желательно решение не подбором, а в общем виде. Не могу сообразить как подойти к решению. Знаю условие сборки планетарной передачи, по-простому - выполняется. Проверка прорисовкой не подтверждает правильность решения. В реальной конструкции нашли решение путём подбора, но получилось оно некорректное. Хочется найти научное решение. Можно сказать - дело чести, найти решение в общем виде для любых чисел зубьев или найти условие сборки и ограничение по числам зубьев. Кто сталкивался с подобной задачей, или знает решение, или думает что знает, прошу поделиться идеями.
click for enlarge 1920 X 872 134.0 Kb picture
ag111 31-08-2012 23:30

Видимо задача имеет ограниченное число решений. Для начала я бы рассмотрел Z1 и Z3 равны или кратны. А вообще думать надо
437 31-08-2012 23:42

Да, Вы правы. Реально решения дискретны, а подходит только одно. В реальной конструкции подобрано решение, но есть сомнения, что не совсем корректно. В реальной машине z1=48, z2=20, z3=24, m=1,5. Думается, в формуле будет коэффициент, к примеру, n=1, 2, 3 и т.д. Т.е. по аналогии с условием сборки планетарной передачи: что-то чему-то будет кратно с к-том n. Как-то так.
Поясню про реальный механизм: в колесе z1 сделан сквозной паз до внутреннего отверстия и часть зубьев отсутствует. Паз сделан для прохода изделия внутрь вращающегося колеса z1. Для того, чтобы кинематика не разрывалась, введена зеркальная ветвь для перехвата через паз от ведущего колеса z3.
ehpebitor 31-08-2012 23:54

quote:
Originally posted by 437:

при условии отсутствия интерференции зубьев. Желательно решение не подбором, а в общем виде.



quote:
Originally posted by ag111:

А вообще думать надо


Обратитесь к Пилерману, тем более он доступен.
437 01-09-2012 12:01

quote:
Обратитесь к Пилерману, тем более он доступен.

Спасибо! Где его искать?
PILOT_SVM 01-09-2012 01:29

А разве такая система зубчатых колёс будет вращаться?
437 01-09-2012 08:06

Будет, куда она денется!
ag111 01-09-2012 08:16

quote:
Originally posted by 437:
z1=48, z2=20, z3=24,

Думать конечно лень, но может число зубьев взять 2**N ? z2=z3=2**(N-1)

А вообще где-то в природе существует справочник машин и механизмов во многих томах. Стоит найти и посмотреть.

437 01-09-2012 08:32

Просматривал книги по ТММ. Нужной информации пока не нашёл. Есть теория зацепления ( про то, почему эвольвента), есть сборка планетарных передач, но вот как соединить эти теории в нужную мне формулу, сообразить не могу. К выводу о необходимости совершать мыслительные усилия мы тоже пришли. Это радует, хоть какой результат!
ehpebitor 01-09-2012 08:36

quote:
Originally posted by 437:

Где его искать?



Григорий Яковлевич Перельман в настоящее время проживает в Купчино - исторический район Санкт-Петербурга.

Прошу прощения у Григория Яковлевича за ошибку в написании его фамилии.

437 01-09-2012 09:06

Спасибо! Не слишком круто - талант Г. Я. Перельмана тратить на такую пустяковую задачу? А мы сами? Слабо? Или мы не советские инженеры?
PS Мой папа в подобных случаях повторял известную фразу: "Нет таких крепостей....(С) далее по тексту.
PPS Прошу в моих текстах расставлять "смайлики" по собственному разумению...
Serjant 01-09-2012 10:51

мдааа...
тригонометрию вовсе забыли, двоечники. двойку в зачотку

расчёт такой системы тупо зависит от угла ВАД ну или от ВСД.
задайте угол потребный и будет вам всё остальное. точнее вы сможете посчитать
катет АС.
катеты АВ и ВС тупо известны из расчёта межосевого расстояния. это полусумма делительных диаметров.
дальше сами догадаетесь, учебник геометрии за 8 класс. прилежащий угол и прочая..
ну двоечники.. ну прогульщики...

Ahasverus 01-09-2012 11:14

ну а при чём тута шестерни. Для упрощения решения можно их заменить на колёса...
ag111 01-09-2012 11:15

quote:
Originally posted by Serjant:
[B][/B]

И что, при любом угле зубчики совпадут?

437 01-09-2012 12:01

quote:
И что, при любом угле зубчики совпадут?

В том-то и дело, что треугольники посчитать легко. Тригонометрию ещё помним. Но вот зубчики совпадут только при соблюдении определённых условий. А каких условий - пытаемся понять...Возникла идея: решение должно получиться в результате решения квадратного уравнения. Типа - экстремум, оптимальная точка... Всё дело за светлой головой, которая составит это уравнение.
437 01-09-2012 12:05

Если представить вместо зубчатых колёс фрикционную передачу с дисками равными делительным диаметрам зубчатых колёс, то расчёт, действительно, заключается в простой тригонометрии, поскольку фрикционные диски не имеют дискретности как зубчатые колёса. Для зубчатых колёс обязательно выполнение условия сборки.
Ahasverus 01-09-2012 12:06

чтобы говорить о зубчиках - оних нужно оговорить ОСОБО.

Ведь можно принять шестерни в виде колёс диаметр 1м и зубчиков на них высотою 0,1мм.

ag111 01-09-2012 12:11

В принципе надо формализовать условия совпадения зубцов. Для трех разных чисел зубцов сложно. Для понимания проблемы советую упростить задачу

Думать конечно лень, но может число зубьев взять 2**N ? z2=z3=2**(N-1)

Условие неоптимальное, так как будут встречаться одинаковые зубья, но решение ИМХО найти проще.

437 01-09-2012 12:19

Хорошо, для упрощения можно принять все числа зубьев одинаковыми. Или вообще, представить одно из колёс z1 или z3 зубчатой рейкой с бесконечным количеством зубьев! Как тогда формализовать задачу?
437 01-09-2012 12:21

quote:
2**N

Это означает 2 в степени N?
ag111 01-09-2012 12:26

Да.

А если все шестерни одинаковы, то задача тривиальна.

Формализовывать не буду, только за зарплату

437 01-09-2012 12:30

quote:
А если все шестерни одинаковы, то задача тривиальна.

Я готов признать собственную тупость! Ткните, пожалуйста , носом в формулу собираемости.
PS Это ли не высший приз - доказательство тупости оппонента?
ag111 01-09-2012 12:36

quote:
Originally posted by 437:

Я готов признать собственную тупость! Ткните, пожалуйста , носом в формулу собираемости.

Ну только число зубьев должно быть кратным четырем. Тогда из соображений симметрии. Вроде.

ag111 01-09-2012 12:40

Мне славы не надо, высказываюсь так, на основании интуиции.
437 01-09-2012 12:48

quote:
Мне славы не надо, высказываюсь так, на основании интуиции.

Хорошее название: "Правило собираемости замкнутых передач AG111"
Смайлики ставьте сами...
ag111 02-09-2012 20:57

Ну что идей нет?

Похоже задача решаема для любых шестеренок, но расстояние между осями будет получаться решением. Что не есть хорошо. Надо использовать принцип симметрии для замыкания системы шестеренок. > <

437 02-09-2012 21:32

Идея родилась следующая: при обкатывании колеса z2 вокруг центра колеса z1 (как сателлит на водиле) из положения В в положение В1, угол поворота колеса z2 должен составить целое число шагов 360/z2. И, одновременно, угол поворота z3 после поворота z2 тоже должен составить целое число своих шагов.Проверил эту идею. Для моих чисел зубьев и исходного угла размещения z2 (60 град) вышеупомянутое условие выполнилось. Проверил условие для произвольного угла в 50,3 градуса. Тоже выполнилось. Увы! Думаем дальше.
ag111 02-09-2012 21:41

Ставим шестеренки 1 и 3 навстречу друг другу зубьями. > <

Накладываем шестерню 2. Считаем межосевое расстояние между 1 и 3.

Вторая шестерня 2 станет из соображений симметрии.

437 02-09-2012 21:50

Обсуждение этой задачи в рабочем коллективе, привело к пониманию одной интересной детали: не обязательно зацепление в месте контакта имеет вид "зуб во впадину" со 100% совпадением. Фаза зацепления может быть любая, некратная единице. Поэтому можно говорить о некоем условии для всей системы а не конкретной пары. Например, сумма чисел зубьев всех колёс в зацеплении должна быть кратна 360 град с целым множителем. В моём случае это условие не выполняется. Завтра на работе проверю прорисовкой.
437 02-09-2012 21:57

quote:
Накладываем шестерню 2. Считаем межосевое расстояние между 1 и 3.

Пробовал в Автокаде. Есть прога рисующая профили зубчатых колёс по модулю и числам зубьев в зацеплении. Использовал её для Солида. Подбор и проворачивание каждого колеса на хитрый маленький угол - тёмное дело. Хочется результат на кончике пера а не интуитивный.
ag111 03-09-2012 06:27

quote:
Originally posted by 437:

Пробовал в Автокаде. Есть прога рисующая профили зубчатых колёс по модулю и числам зубьев в зацеплении. Использовал её для Солида. Подбор и проворачивание каждого колеса на хитрый маленький угол - тёмное дело. Хочется результат на кончике пера а не интуитивный.

Если я не ошибаюсь в модели, то результат строгий. Что не так? Эту систему нельзя собрать для любого межосевого расстояния, а только такого, которое шестерни позволят.

Расстояние рассчитывается математически строго. Никаких малых углов при расчете не используется. Тригонометрия 6-го класса. Вот определить какие зубья зацеплены можно примерно и в Солиде.

Условием сборки является симметричность системы относительно линии, соединяющей оси шестеренок 1 и 3. Проще проследить по вершинкам зубьев на этой линии. А задачу зацепления трех шестеренок с доп. условием решайте сами.

--->------<--

437 03-09-2012 22:19

Продолжаем занятия по ТММ!
quote:
А если все шестерни одинаковы, то задача тривиальна.

Прорисовка для 4-х и 3-х колёс показала, что 3 и 4 ОДИНАКОВЫХ колеса зацепляютс между собой при любых значениях чисел зубьев. Правда зацепление из 3-х колёс не может вращаться, но сам факт интересен
click for enlarge 1920 X 2717 248.2 Kb picture
437 03-09-2012 22:36

Методом последовательных приближений получены результаты по реальным числам зубьев. Самое интересное, что углы и размеры настолько "неровные", что понять закономерность и вывести формулу не представляю как.
click for enlarge 1920 X 2717 132.7 Kb picture
click for enlarge 1920 X 2717 118.7 Kb picture
Pavel_A 04-09-2012 09:51

ИМХО, надо разделить данный редуктор на 2 части АВ и ВС. По стандартным формулам расчитываете межосевые расстояния АВ и ВС. Расстояние АС берёте произвольным, учитывая размеры колёс. Передаточное отношение редуктора будет Z3/Z1, соответственно размер промежуточного колеса не влияет ни на что.
Про собираемость.
Если мне не изменяет склероз, то вашу передачу можно усложнить до планетарной, с центром в точке А с остановленным водилом. Т.е. АВ - радиус водила. Z3 - разворачиваем в рейку и выгибаем в другую сторону.
Соответственно, что бы обеспечить условия собираемости, сумма зубьев основных колёс должна быть кратна числу сателитов, т.е. 2.

Совершенно не понял глубину проблемы данной задачи. Тут или всё слишком просто или слишком хитро.

437 04-09-2012 19:21

quote:
Тут или всё слишком просто или слишком хитро.

К моему большому сожалению, при обсуждении этой проблемы в трудовом коллективе, не сдержался и на заявление , что решение задачи элементарно, в сердцах сказал что уволюсь нах раз я такой тупой и решение элементарно! потом страсти поутихли и обсуждение продолжилось. НО! НО! теоретическое решение найдено не было! придётся ещё пообременять своей несносной натурой наш дружный коллектив.Да, Вы правы, межосевые расстояния в зацеплении пары колёс находятся легко.И правило сборки центральных колёс планетарной передачи мне также знакомо. Но в этой задаче оно неприменимо, поскольку , на самом деле сателлитов здесь не два ( двое колёс, но не два сателлита) а число их равно 360 градусов делённое на угол между АВ и АВ1. А этот то угол и есть искомое! Расстояние АС нельзя брать произвольно, оно должно рассчитываться из условия сохранения межосевых (по аналогии с условием соосности планетарных передач) и условия вхождения в зацепление колёс 16 2 и 3. Решений для данных чисел зубьев всего 3. Лежат они в диапазоне от соприкосновения колёс 1и 3, до соприкосновения колёс 2 и 2. Продолжаем разговор (с).
unname22 04-09-2012 23:48

Вы там чего обкурились?
нет тут никаких специфических условий собираемости в силу зеркальной симметрии.

Serjant правильно все сказал

Pavel_A 05-09-2012 08:05

quote:
Originally posted by 437:

на самом деле сателлитов здесь не два ( двое колёс, но не два сателлита) а число их равно 360 градусов делённое на угол между АВ и АВ1. А этот то угол и есть искомое!



Да, упустил это из виду. Но кто мешает задать этот угол (определить кол-во сателитов) и дальше отталкиваться от этого значения. Т.е. жёсткие условия будут - коэффициэнт редукции и межъосевое расстояние АС (если оно критично) и дальше играем размером колёс.
quote:
Originally posted by unname22:

нет тут никаких специфических условий собираемости в силу зеркальной симметрии.



Симметрия получается только при определённых отношениях размеров механизма (например как на рисунке). При иных параметрах симметрии может не получиться.
unname22 05-09-2012 16:51

Например?
437 05-09-2012 18:34

Нашёл решение этой задачи в книге Решетова "Самоустанавливающиеся механизмы". Даже сосканировал нужные страницы и размещу их щдесь. там рассматривается общий случай задачи с промежуточными колёсами разной величины. решение сводится к решению обращённого планетарного м-ма и нахождению положения последнего 3-го колеса по условию сохранения межосевых и кратности угла поворота 3-го колеса соотношению 360 градусов делённое на число зубьев колеса 3. Теорию проштудировал основательно, всё равно метод решения предполагает задание первоначального положения линии соединяющей 1 и 2, построение треугольника и сравнение результата с фазой колеса 3. Такие механизмы применяют в тепловозных приводах, там, где есть колёса с неполным венцом и т.д. Числа зубьев могут быть любые, и неравные и некратные. Но положение (координаты центров) колёс будет строго определённым для каждого случая. Произвольно задать координаты центров, даже соблюдая расчётные межосевые, нельзя!
Парадокс вот в чём! Наложение прорисованных колёс с профилем зубьев на просчитанное по формулам положение центров не дало совпадения! И наоборот, найденное по зацеплению зубьев положение не удовлетворяет условиям формул. Значит, где-то ошибка! Будем искать.
ag111 05-09-2012 18:35

Решение вроде элементарно, я его вроде изложил. Набор шестерен жестко задает межосевое расстояние. Задаешь три целых числа - получаешь некое нецелое в общем случае межосевое расстояние.
437 05-09-2012 19:02

Нет. Спорить не буду. Завтра выложу сканы книги.
unname22 05-09-2012 19:14

ну скажем для четного чисел зубьев Z1 и Z3 доказательство отстутствия дополнительных критериев элементарно.

Для нечетного надо поскропеть но оно будет.

Не путайте задачи свою и из книги.

437 05-09-2012 21:04


quote:
ну скажем для четного чисел зубьев Z1 и Z3 доказательство отстутствия дополнительных критериев элементарно.

Правильно ли я понял Вас, что при чётных z1 и z3 цепь, как на чертеже в начале темы, собирается при ЛЮБОМ, произвольно выбранном, положении центра z2? При условии, конечно, соблюдения расчётных межосевых.
unname22 05-09-2012 22:23

Да, граничными условиями будут лишь касания зубьями Z1 и Z3 с одной стороны и Z2 между собой с другой.

Ну и в случае выполнения всех кинематических условий разумеется, но это проверяется при расчете любого зубчатого зацепления по оффициальной методике.


Сейчас подумал, а давайте с другой стороны зайдем?
Сначала выкинем одно из Z2
Тогда при любом допустимом взаимоположении и числе зубьев Z1 Z2 и Z3
их поворотом можно поймать момент, когда одни из линий зеркальной симметрии колес z1 и z2 будут расположены на одной линии, так? С этим спорить не будете?
Если таки не будете то в этот момент относительно общей линии симмтерии отобразим колесо Z2 в Z2'. В этот момент оно войдет в зацепление и с Z1 и Z3 в силу свойств зеркальной симметрии, так? Ну а раз так - ЧТД

unname22 05-09-2012 22:38

Да, самое главное забыл, вы можете сразу сказать, что не у всех зубчатых колес может наблюдаться линия зеркальнйо симметрии.
Но тут делаем финт ушами: Внешние половины колес в нашем случае нам совсем не интересны. Их можно просто отбросить.
Тогда слова "когда одни из линий зеркальной симметрии колес z1 и z2 будут расположены на одной линии"
Можно заменить на: "когда радиусы, проведенные из центра зуба к оси шестерни", либо "когда радиусы, проведенные из центра впадины к оси колеса"
, далее все абсолютно идентично и применимо для любых чисел зубьев.

Ладно спать пора.

unname22 06-09-2012 17:42

Че-то куда-то ТС подевался, навернео обходной подписывает? ))
437 06-09-2012 19:02

Я здесь! Про обходной удачно пошутили. Выкладываю сканы книги Решетова. При внимательном рассмотрении найдены опечатки в формулах, не влияющие, впрочем , на результат вычислений. Зайдя в тупик, решили сделать макет по двум вариантам: по прорисовке и по расчёту. Испытания обоих макетов покажут кто прав. "Практика - основа познания и критерий истины"(С) Пообещал напоить коньяком коллег после того, как найдём причину разницы в результатах расчётов и прорисовок. Расчётливые коллеги обрадовавшись затребовали вискарь. Да хоть самогон, лишь бы истина восторжествовала!
click for enlarge 1506 X 1831 525.8 Kb picture
437 06-09-2012 19:19

.
click for enlarge 1398 X 1590 451.5 Kb picture
click for enlarge 1434 X 917 581.0 Kb picture
437 06-09-2012 19:39

Продолжаю
click for enlarge 1433 X 2225 442.7 Kb picture
437 06-09-2012 19:53

дальше
unname22 06-09-2012 20:10

Смысл? пока в моем доказательстве противоречий не обнаружено )
437 06-09-2012 20:23

Линии зеркальной симметрии КМК не рулят. Рулят фазы поворота колёс. Положение двухзвенника АВС с колёсами в вершинах при котором угол поворота колеса 3 будет кратен его угловому шагу по зубьям и есть искомый. вся трудность для меня была в выражении этого момента в виде формулы или нескольких формул.
unname22 06-09-2012 22:52

Почему не рулят? опровергните.
Вам формула ненужна никакая абсолютно, задача тривиальна.
Pavel_A 26-09-2012 10:39

Ну что там с колёсами? На практике проверили?
437 26-09-2012 20:16

Да, проверил. Вариант подобранных положений колёс прекрасно работает, вариант расчётного положения - не работает. В поисках истины решил проверить методом прорисовки углы поворота колёс . И здесь обнаружилась любопытная вещь: поворачиваю колесо 2 вокруг колеса 1 и, соответственно, колесо 3 и измеряю углы поворота каждого колеса, при этом, расчётный угол поворота колеса 2 совпадает с прорисованным, а расчётный угол колеса 3 НЕ совпадает с прорисованным. Похоже, у Решетова ошибка в формулах.
Послал задачу на кафедру ТММ в Бауманку. Пока жду ответ.
unname22 28-09-2012 12:44

Посмеются над вами)
Если что я работаю на кафедре сходной тематики, правда менее именитого вуза
Недавно кстати рассказывал историю в качестве курьеза профессору, который ДМ читает)
437 28-09-2012 20:07

Пусть посмеются. Истина должна восторжествовать. Пусть даже ценой того , что я явлюсь посмешищем для всех.
А что сказал профессор менее именитого вуза?
А знаете о чём были первые слова на кафедре именитого вуза после того, как выслушали меня?
unname22 28-09-2012 23:36

да посмеялся по доброму да припомнил несколько примеров подобных из своей практики.

Знаете анекдот, когда ежик занимался аутотренингом "Я сильный, я сильный, я сильный", ну и проходящий мимо медведь хорошенько так подопнул ежа, как футбольный мяч, тот встал, отряхнулся и просто добавил "Но легкий..."

Если всех убеждать что элементарная задача очень сложна, реально она сложнее не станет.

437 18-10-2012 15:08

Задача решена. Доброжелательный и бескорыстный помощник в решении задачи - Ермак Владимир Николаевич, доцент кафедры прикладной механики КузГТУ. Огромное ему спасибо. Суть решения: гибкая замкнутая зубчатая лента, не имеющая толщины и в поперечном сечении похожая на лист профнастила огибает промежуточные колёса снаружи, а крайние колёса по внутренним сторонам. (смотри рисунок) Условие сборки - целое число зубьев в этой зубчатой ленте.
Проведённый расчёт и выведенные формулы показали полное совпадение расчётных и практических результатов.
Приведённые выше расчёты из книги Решетова - неверны в принципе, что и подтвердилось практикой.
click for enlarge 1239 X 1754 208.9 Kb picture
unname22 19-10-2012 07:20

Гы Гы Гы, сейчас на кафедру отдам, поржать.
Где вы раньше были, заседание кафедры во вторник было )
437 22-10-2012 15:58

Добрый день! Начата эта тема моим сообщением, и закончится тоже моим. откопал статью

Paper Ref: S0608_P0299
3rd International Conference on Integrity, Reliability and Failure, Porto/Portugal, 20-24 July 2009

CONFIGURATIONS TO INCREASE POWER DENSITY IN SPLIT TORQUE GEARBOXES WITH IDLER PINIONS
Jose A. Vilán Vilán; Abraham Segade Robleda; Marcos López Lago; Angel M. Fernández Vilán;
Area of Mechanical Engineering, Superior Technical School of Industrial Engineers of the University of Vigo 36310 Vigo, Spain

Email: asegade@uvigo.es

С помощью промта перевёл и получил прекрасное пособие по схемам и расчётам передач с расщеплением, а по-нашему: двупоточных передач с промежуточными колёсами.
Подход у испанца схожий с методой Ермака, но немного отличается. В статье рассмотрено много схем двупоточных передач, выведена математика, приведены примеры расчёта.
Всё как положено: графики, таблицы, иллюстративный материал, ссылки и т.д. Всего на 16 страниц.
Проведённый расчёт по испанцу показал полное совпадение его результатов с результатами расчёта по Ермаку и с результатами прорисовки. Что и было искомым результатом.
На этом прошу считать тему исчерпанной и закрытой.
Прошу в этой теме больше не отмечаться, сказанного выше достаточно.
С уважением, Владимир7

unname22 22-10-2012 18:44

Вы хоть подумать над смыслом предложенного вами решения пробовали?
Ничего не смушает? )))
437 22-10-2012 20:12

Предоставим небо птицам, а теорию теоретикам
У меня есть три решения моей задачи тремя разными способами, сиречь, теориями. Из них два решения, воплощённые в железе - успешно работают. А одно решение воплощённое в металле - не работает. Причём, прошу заметить, не работает не по причине некачественного изготовления или по другой причине связанной с металлом. Не работает именно по причине ошибок в теории.
Я проверял формулы из книги Решетова: первая половина теоретической посылки подтверждается практикой, вторая, увы, не подтверждается.
Решения Ермака и испанца, несмотря на различия, прекрасно подтверждаются на практике.
Примечательно, что испанец прекрасно понимает специфику проектирования расщеплённых передач. Человек в теме.
Так что меня ничто не смущает. Я получил ответ на свой вопрос и сейчас решаю другие задачи.
С уважением, Владимир.
unname22 22-10-2012 20:34

Хорошо давайте сюда ваше не работающее решение ))
437 22-10-2012 20:46

Отправил в РМ
unname22 23-10-2012 08:39

Это цитата из первого сообщения в теме:

quote:
Originally posted by 437:
Здравствуйте, умные головы!
Прошу Вашей помощи в решении задачи об условиях сборки зубчатых колёс ( см. чертёж). Дано: z1, z2, z3 и, соответственно модуль m. Требуется найти координаты центров [B]z2 и z3
при условии отсутствия интерференции зубьев. Желательно решение не подбором, а в общем виде. Не могу сообразить как подойти к решению. Знаю условие сборки планетарной передачи, по-простому - выполняется. Проверка прорисовкой не подтверждает правильность решения. В реальной конструкции нашли решение путём подбора, но получилось оно некорректное. Хочется найти научное решение. Можно сказать - дело чести, найти решение в общем виде для любых чисел зубьев или найти условие сборки и ограничение по числам зубьев. Кто сталкивался с подобной задачей, или знает решение, или думает что знает, прошу поделиться идеями.
[URL=https://forum.guns.ru/forums/icons/forum_pictures/006554/6554866.jpg][/URL]

А это цитата из того, что вы мне прислали:


quote:
Originally posted by 437:

Известно: Z1, Z2, Z3, модуль m. Требуется найти положение центров колёс при условии сохранения межосевых расстояний и собираемости механизма.

Вам не стыдно подменять одну задачу другой?


И еще раз повторю, по вашему при модуле 1.5 и числе зубьев
z1 = 48
z2 = z4 = 20
z3 = 24

Собрать систему невозможно?
Вы подписываетесь под этим?

У меня компас тут лицензионный без shaft-а, но для доказательства идиотизма, я готов эти зубчатые колеса руками нарисовать )

Домашнее хозяйство

Задача о зацеплении зубчатых колёс